Pinpointing the classifiers of English language writing ability: A discriminant function analysis approach

Authors

Ferdowsi University of Mashhad, Iran

Abstract

The  major  aim  of  this  paper  was  to  investigate  the  validity  of  language  and
intelligence  factors  for  classifying  Iranian  English  learners`  writing  performance.
Iranian  participants  of  the  study  took  three  tests  for  grammar,  breadth,  and  depth  of
vocabulary, and two tests for verbal and narrative intelligence. They also produced a
corpus  of  argumentative  writings  in  answer  to  IELTS  specimen.  Several  runs  of
discriminant function analyses were used to examine the classifying power of the five
variables  for  discriminating  between  low  and  high  ability  L2  writers.  The  results
revealed that among language factors, depth of vocabulary (collocational knowledge)
produces  the  best  discriminant  function.  In  general,  narrative  intelligence  was  found
to  be  the  most  reliable  predictor  for  membership  in  low  or  high  groups.  It  was  also
found  that,  among  the  five  sub-abilities  of  narrative  intelligence,  emplotment  carries
the  highest classifying  value.  Finally, the applications and implications of the results
for  second  language  researchers,  cognitive  scientists,  and  applied  linguists  were
discussed.

Keywords

Main Subjects


Introduction
Deciding on priorities in teaching L2 writing
is  a  pedagogical  necessity  recognized  by
many TEFL (Teaching English as a Foreign
Language)  experts  (e.g.  Collins,  1998;
Crossley  &  McNamara,  2011;  DeVillez,
2003;  Ferris,  2004).  Numerous  studies  have
been  concerned  with  identification  (e.g.
Crossley  &  McNamara,  2011)  or  re-evaluation  (Weston,  Crossley,  McCarthy,  &
McNamara,  2011)  of  the  factors  affecting
L2 learners’ writing performance. Various
factors  such  as  lexical  proficiency
(Nakamaru,  2011),  syntactic  proficiency
(Truscott,  1999),  cohesion  (McNamara,
Louwerse,  McCarthy,  &  Graesser,  2010),
coherence  (McNamara,  Kintsch,  Butler-Songer,  &  Kintsch,  1996),  cognitive
mechanisms  (Bourke  &  Adams,  2010),  and
higher-order  processes  (Sparks  &
Gonschow,  2001)  have  been  considered  in
                           
debates  over  the  primary  predictors  of
success in achieving L2 writing proficiency.
 
In  addition,  another  line  of  research  in
applied  linguistics  has  been  growing  over
the  last  decade,  which  has  placed  its  focus
on  the  study  of  cognitive  aspects  of
language  perception  and  production.
Cognitive  science  is  considered  as  the
legitimate  interdisciplinary  paradigm  that
can  cover  and  re-examine  many  research
problems  in  applied  linguistics  and  TEFL
(Segalowitz,  2010).  The  study  of
intelligence  is  a  prolific  research  paradigm
in  cognitive  psychology.  One  of  the  factors
which  seem  to  be  of  great  importance  in
dealing  with  the  writing  ability  is  narrative
intelligence  (Pishghadam,  Baghaei,  Shams,
&  Shamsaee,  2011).  As  the  name  implies,
narrative  intelligence  deals  with  the
narrative  capabilities  of  individuals,  which
can  be  a  potential  factor  for  writing
effectively.  
 
Another type of intelligence which seems to
be  relevant  to  writing  is  verbal  intelligence.
It  is  defined  as  the  ability  to  express  what
one  has  in  mind.  There  is  evidence  that
verbal  intelligence  has  a  meaningful
relationship  with  academic  achievement
(Fahim  &  Pishghadam,  2007),  writing
achievement  (Abiodun  &  Folaranmi,  2007),
and writing fluency (Pishghadam, 2009).
 
All  in  all,  we  are  facing  two  dimensions
dealing  with  the  nature  of  writing  ability:
linguistic  and  cognitive.  With  this  in  mind,
this  paper  attempts  to  connect  the  literature
available on linguistic features of L2 writing
into  studies  concerned  with  high-order
processes or intelligence factors in language
production.  Linguistic  features  under
investigation  include  knowledge  of
grammar, breadth, and depth of vocabulary;
high-order  capacities  included  in  the  study
are verbal and narrative intelligences.  
A  set  of  discriminant  function  analyses
(DFA) has been used to explore the relative
validity  of  the  above  five  variables  and  the
five sub-abilities of narrative intelligence for
classifying Iranian English learners’ writing
performance.  The  research  questions  of  the
study are:
 
1.  Which  of  the  language  or  intelligence
factors  can  classify  the  L2  writers  into
low and high groups more significantly?
2.  Which  of  the  sub-abilities  of  narrative
intelligence  can  classify  the  L2  writers
into  low  and  high  groups  more
significantly?
 
The review of the related literature is meant
to  provide  a  brief  introduction  to  the
sequence  of  studies  and  insights  that  led  to
the  present  research.  A  combination  of
theoretical  frameworks  and  empirical
findings  are  presented  to  set  the  ground  for
analyzing the data and discussing the results.
 
Theoretical background
A  purposeful  review  of  the  literature
accumulated  in  writing  research  can  unveil
the evidence pointing to the possible role of
intelligences  and  their  interaction  with
cognitive  mechanism  involved  in  L2
writing.  Concepts  such  as  syntactic  and
lexical  processing,  coherence,  and
organizational skills are frequently discussed
in L2 writing research. It can be argued that
these  concepts  overlap  with  cognitive
abilities  which  are  labeled  as  multiple
intelligences.  A  deeper  look  into  the  nature
of  language-related  intelligences  and
cognitive  processes  involved  in  L2  writing
can  shed  more  light  on  the  possible
interactions  between  the  two.  It  is  fair  to
assume that one’s ability to express oneself
through  language  (verbal  intelligence)  can
have  a  role  in  managing  and  directing
language-related  cognitive  abilities.  The
most  recent  type  of  intelligence  is  dubbed
 

narrative  intelligence.  It  is  the  ability  to
perceive  and  reproduce  narrative  patterns
(Randall,  1999).  If  a  broad  interpretation  of
narrative is adopted (see Bruner, 1987), it is
no  longer  limited  to  stories  and  recounting
but will cover a wide range of organizational
skills  in  the  human  mind.  Many  scholars
consider  narrative  intelligence  as  a  very
important  cognitive  ability  which  governs
many mental processes (Bers, 2002; Bruner,
1987, 1991; 1998). Some even consider it as
the  main  evolutionary  advantage  of  human
over  animals  (e.g.  Dautenhahn,  2002).
Given  the  prominent  place  assumed  for
narrative  intelligence  in  human  mental
activities,  it  is  hard  to  resist  the  idea  that
narrative  intelligence  might  have  a
meaningful role in developing one’s writing
ability.  The  possible  relationships  between
intelligence  and  language  skills  can  be
reviewed  under  two  major  headings:  Micro
and  macro  factors  in  L2  writing.  Micro
factors  refer  to  writing  components  which
are  usually  learned,  produced,  and  assessed
in  isolation  from  other  parts  of  the  text,
macro factors refer to more general abilities
that  govern  L2  writing  in  a  scope  that  goes
well  beyond  words  and  sentence,  and  is
manifested throughout the whole text.
 
Micro factors in L2 writing
Two  main  micro  factors  which  are
frequently  referred  in  the  L2  writing
literature  are  knowledge  of  vocabulary  and
knowledge  of  grammar.  Lexical  and
syntactical  processing  has  always  been
considered  as  two  cornerstones  of  language
proficiency,  and  their  mastery  is  often
believed  to  play  a  vital  role  in  language
production. This is evident from the bulk of
studies  on  the  role  of  vocabulary  and
grammar  in  L2  writing  (e.g.  Ferris,  2004,
2010;  Nakamaru,  2011;  Truscott,  1996,
1999). The controversy arises when it comes
to  prioritization.  While  some  scholars
emphasize the primary importance of lexical
knowledge  in  language  learning  (de  la
Fuente,  2002;  Ellis,  1995),  another  group
considers  grammatical  range  and  accuracy
as  the  best  predictor  of  successful  L2
production (see Kenkel & Vates, 2009).  
 
According  to  Crossley  and  McNamara
(2009), there are two ways to study the role
of  lexical  items  in  L2  writing.  Most  of  the
studies  only  focus  on  surface  indexes  such
as  lexical  density,  accuracy,  and  diversity
(e.g.  Polio,  2001)  while  there  is  a  smaller
group  of  researchers  who  look  into  deeper
measures  of  L2  lexical  proficiency  such  as
lexical  networks  (e.g.  Schmitt,  1998).  Polio
(2001) studied lexical diversity as one of the
measures  of  breadth  of  vocabulary.  The
disadvantage  of  such  studies  is  that  they  do
not  consider  depth  of  vocabulary
knowledge.  Breadth  of  vocabulary  is
concerned  with  how  many  words  a  learner
knows  whereas  depth  of  vocabulary  is
concerned  with  to  what  degree  a  learner
knows  a  word.  The  latter  is  usually
examined  through  collocation  tests  (e.g.
Schmitt,  Schmitt,  &  Calpham,  2001).  Some
of the other measures of depth of vocabulary
which  are  mostly  based  on  connectionist
models of lexical  acquisition are conceptual
knowledge,  sense  relations,  word
associations,  and  word  correctness
(Haastrup & Henriksen, 2000).
 
MacrofFactors in L2 writing
Coherence  and  cohesion  are  two  central
themes  in  evaluations  of  L2  writing,  (see
Crossley & McNamara, 2010). According to
many scholars (e.g. Collins, 1998; DeVillez,
2003)  both  cohesion  and  coherence  are
significantly correlated  with writing quality.
However,  McNamara,  Crossley,  and
McCarthy  (2010)  found  no  evidence  that
cohesion  cues  are  positively  related  to
writing  quality.  In  a  later  study,  Crossley
and  McNamara  (2010)  investigated  the  role
of coherence and cohesion in the evaluations
                        
of  writing  quality;  they  found  that  expert
raters  evaluate  coherence  based  on  the
absence  of  cohesive  ties  not  their  presence.
As  they  emphasize,  this  finding  has
important contributions to our understanding
of the dynamics of coherence and how they
are implemented in a text.  
 
Another  important  macro  factor  in  L2
writing  quality  is  learners’  higher-order
processing. This has been reflected in many
studies  describing  the  ways  in  which  L2
learners’  L1  can  influence  their  written
production (e.g. Connor, 1984; Jarvis, 2010;
Reid,  1992).  A  group  of  these  cross-linguistic  studies  focus  on  higher-order
processes  involved  in  L2  writing  including
planning  and  text  evaluation  (Cumming,
1990).  Crossley  and  McNamara  (2011)
believe  that  these  high-order  processes  are
strongly linked to one’s L1 and must be
incorporated  into  any  explanation  of  L2
writing proficiency. Stallard (1974) believed
that successful writers are not overwhelmed
by  syntactic  and  lexical  features  of  L2  and
stay  focused  on  the  general  organization  of
their writing. The study of cognitive aspects
of  writing  covers  one  aspect  of  the  role  of
higher-order  processes  in  language
production.  Hall  (1990)  found  evidence  for
the  existence  of  the  same  cognitive
behaviors  in  L1  and  L2.  Kobayashi  and
Rinnert’s (2008) findings show that non-linguistic cognitive factors play an important
role in writing and transfer from L1 to L2 or
even  vice  versa.  The  study  of  cognitive
processes  involved  in  L2  writing  found
greater  momentum  as  the  process-oriented
paradigm in writing research flourished (see
Pennington & So, 1993).  
 
Intelligence  and  organizational  writing
skills
To  organize  written  discourse  properly,  L2
writers  must  rely  on  their  cognitive
capabilities. Multiple intelligences (Gardner,
1983)  cover  various  aspects  of  cognitive
processing.  As  the  most  recent  type  of
intelligence  proposed  by  Randall  (1999),
narrative intelligence is defined as the ability
to  perceive  and  reproduce  narrative
constructions  and  consists  of  five  sub-abilities  namely  emplotment,
characterization,  narration,  genre-ation,  and
thematization.  Randall  argues  that  narrative
intelligence  is  a  complex  cognitive  capacity
which includes elements from interpersonal,
intrapersonal,  and  verbal  intelligence.  The
interpersonal aspect of narrative intelligence
is  concerned  with  communicative  skills  and
is  related  to  genre-ation  and  thematization;
the  intrapersonal  aspect  deals  with  the
ability  to  express  one’s  thoughts  and
feelings  and  is  manifested  via  narration  and
characterization; the verbal aspect deals with
the  linguistic  articulation  of  concepts  and
their relationships and is mostly reflected in
the dynamics of emplotment.  
 
Verbal  intelligence  was  introduced  long
before  narrative  intelligence  (see  Wechsler,
1981)  and  has  an  independent  measurement
scale  which  examines  one’s  ability  to
explain  the  meaning  of  lexical  items  (see
Wechsler,  1997).  Although  verbal
intelligence  is  manifested  via  linguistic
performance,  its  nature  goes  beyond
measures  of  vocabulary.  While  breadth  and
depth  of  vocabulary  examine  one’s
perceptive  knowledge  of  the  target  words,
verbal intelligence reflects one’s productive
knowledge  when  dealing  with  various
concepts.  The  productive  nature  of  verbal
intelligence  makes  it  relevant  to  the
cognitive  processes  involved  in  language
production.  The  place  of  verbal  intelligence
in  language  learning  has  recently  received
more  attention  from  the  scholars.  For
example,  Fahim  and  Pishghadam  (2007)
found  a  significant  relationship  between  the
verbal  intelligence  and  academic
achievement of university students majoring

in  English;  L2  writing  was  one  of  the
components  of  academic  achievement  in
their  study.  Abiodun  and  Folaranmi  (2007)
found  that  verbal  intelligence  has  a
meaningful effect on L2 learners’ writing
performance.  Pishghadam  (2009)  found
causal  relationships  between  verbal
intelligence  and  L2  writing  ability.  These
results  show  that  the  place  of  verbal
intelligence  in  L2  writing  should  not  be
overlooked.   
 
Classifiers of L2 writers
Crossley  and  McNamara  (2010)  used  DFA
to  study  the  classifying  effect  of  cohesion
indices  versus  complexity  indices  for  low
quality  and  high  quality  L2  writings.  Their
results  show  that  cohesion  indices  cannot
classify  the  writers  into  low  ad  high  groups
whereas  complexity  indices  do  so  well
above  chance.  In  other  words,  lexical
diversity,  word  frequency,  and  syntactic
complexity  of  the  produced  language  can
predict  the  quality  of  the  writings,  as
perceived  by  expert  raters  and  reflected
through  writing  scores,  better  than  cohesion
scores.  In  a  later  study  (see  Crossley  &
McNamara, 2011), they delved more deeply
into the nature of the raters’ understanding
of coherence and the rubrics based on which
they  operationalize  it.  They  found  out  that
raters’  perception  of  coherence  is
considerably  different  from  many  intuitive
notions  of  it.  This  was  reflected  in  the
significant  relationship  found  between  the
absence  of  cohesive  devices  and  a  more
coherent  representation  of  the  text  in  the
raters’ mind. They argued that as advanced
readers  with  high  topical  and  background
knowledge,  the  raters  develop  a  more
coherent  mental  representation  of  the  text
when  it  includes  less  cohesive  devices  such
as  word  overlap,  resolved  anaphors,  causal
cohesion,  and  connectives.  This  is  because
advanced  readers  are  inclined  to  make
inferences that connect different parts of the
text  to  each  other  as  well  as  to  bits  of  their
background  knowledge;  therefore,  the
overuse of explicit cohesive connectors does
not  contribute  to  the  coherence  of  their
mental image of the text.
 
Another  discriminant  study  was  conducted
by  McNamara,  Crossley,  and  McCarthy
(2010)  to  explore  the  linguistic  differences
between L2 writings rated as high or low by
experts.  They  examined  four  linguistic
indices:  1)  cohesion;  2)  syntactic
complexity;  3)  diversity  of  words;  and  4)
characteristics  of  words.  According  to  the
DFA  results  the  three  most  predictive
indices  of  writing  quality  are  syntactic
complexity,  lexical  diversity,  and  word
frequency.  None  of  the  26  validated  indices
of  cohesion  used  in  this  study  showed  any
meaningful difference between low and high
ability  L2  writers.  Those  writings  rated  by
the experts to be of higher quality were more
difficult  to  read  and  used  sophisticated
language.  
 
Method
Participants
Participants  of  the  present  study  comprised
346  Iranian  learners  of  English  as  a  foreign
language  from  four  cities  of  Iran:  Mashhad,
Kashan, Lahijan, and Tehran. The age of the
participants  ranged  from  17  to  33.  The
sample  included  267  university  students
majoring  in  English  Language  and
Literature,  Engineering,  and  Basic  sciences,
and the rest were high school students out of
which  201  participants  were  females  and
145  were  males.  All  the  participants  were
learners of English attending private English
institutes  (223  participants)  or  passing
university  ESP  courses  (123  participants).
Each participant attended 6 test sessions. All
the  participants  were  informed  about  the
general  objectives  of  the  project,  gave  their
consent  to  participate  in  the  study  and  were
assured  of  the  confidentiality  of  any
                    
personal  information  they  revealed  during
the  study.  It  should  be  mentioned  that
sampling  was  based  on  accessibility  and
major was not controlled.   
 
Instrumentation
The  measures  utilized  in  this  study  consist
of  scales  for  measuring  narrative
intelligence,  verbal  intelligence,  knowledge
of  grammar,  depth  and  breadth  of
knowledge of vocabulary, and writing skill.
 
Pishghadam,  et  al.  (2011)  developed  and
validated  (using  Rasch  analysis)  a  scale  of
narrative  intelligence.  This  scale  which
comprises  23 items assessing participants’
performance  on  several  dynamics  of
narrative  intelligence  (Randall,  1999)  was
employed  to measure participants’ narrative
intelligence.  The  scale  has  5  subsections:
emplotment,  characterization,  narration,
genre-ation,  and  thematization.  The
reliability  (internal  consistency)  of  this
measure  is  0.72  (Pishghadam  et  al.,  2011).
The  inter-rater  reliability  of  the  scale  was
0.83.  The  Alpha  Cronbach  for  this
instrument in the present study was 0.85.  
 
To  measure  verbal  intelligence  of  the
subjects,  the  verbal  scale  of  Wechsler’s
Adult  Intelligence  Scale  (III)  (1981)  was
used.  The  Farsi  version  of  the  WAIS
Vocabulary  subsection  used  in  the  present
study  consists  of  40  words.  This  translated
version  was  developed  by  Azmoon  Padid
institute  (1993)  in  Tehran,  Iran.  The  Alpha
Cronbach  for  the  vocabulary  subsection  in
the  present  study  was  0.68.  The  reliability
coefficient  (internal  consistency)  for  the
Verbal  IQ  is  .97.  The  vocabulary  subtest
correlates  highly  (.91-.95)  with  the  Verbal
scale  of  the  WAIS-III.  The  concurrent
validity  of  WAIS-III  was  established  based
on  high  correlation  with  other  valid
intelligence  scales,  ranging  from  78  to  89
(Silva, 2008).
The structure module of TOEFL PBT (ETS,
2005b)  was  used  to  measure  participants`
knowledge  of  English  grammar.  Since  the
validity of this scale has already been tested,
the  researchers  found  the  scale  appropriate
to be used in the present study. This module
contains  40  items.  Fifteen  items  present  a
sentence  with  one  part  replaced  by  a  blank.
In the next 25 items, each sentence has four
underlined words or phrases. It was required
that the participants identify the wrong parts
and  mark  them  on  the  answer  sheets.  The
Alpha  Cronbach  for  this  instrument  in  the
present study was 0.80.
 
To  measure  the  depth  of  participants’
vocabulary  knowledge,  the  Depth  of
Vocabulary (DVK) scale was used. The test
contains  40  items.  Each  item  consists  of  a
stimulus  word  (adjectives)  and  eight
choices.  In  each  item,  the  first  four  choices
(A-D)  are  in  one  box  and  the  second  four
choices  (E-H)  are  in  another  box.  Among
the  choices  of  the  left  box,  one  to  three
choices  could  be  synonymous  to  the
stimulus, whereas among the four choices in
the  right  box,  one  to  three  co-occurring
words  could  be  matched  with  the  stimulus
(collocations).  The  overall  reliability  of  this
test  is  alpha:  .91  (Qian,  1999),  and  for  this
study is alpha: 0.76.
 
The  second  version  of  Vocabulary  Levels
Test (VLT) was used to measure the breadth
of participants’ vocabulary knowledge. The
validity  of  the  five  sections  of  this  test
reported  as  Rasch  ability  estimates  is  as
follows:  42.5  (2000),  45.9  (3000),  51.0
(5000),  55.2  (Academic),  and  61.7  (10000).
It  measures  the  meaning  of  the  content
words  via  matching  the  definitions  with  the
choices.  For  each  three  definitions,  six
choices  are  available,  but  each  definition
should  be  associated  with  only  one  choice.
The measure is composed of  five frequency
levels  (2000,  3000,  5000,  academic,  10000)

and  thus  is  called  the  levels  test.  The  first
two levels (2000 and 3000) are composed of
high  frequency  words.  The  5000  level  is
considered  a  boundary  level  and  the  next
two  levels  consist  of  words  that  generally
appear  in  university  texts  (academic)  and
low  frequency  words  (10000).  The
reliability  of  the  different  levels  of  this  test
was  reported  as  follows;  2000  (.92);  3000
(.92); 5000 (.92); academic (.92); and 10000
(.96)  (Schmitt  et.  al,  2001).  The  Alpha
Cronbach  for  this  instrument  in  the  present
study  was  0.81.  Schmitt  et  al.  (2001)
estimated  the  validity  of  the  Levels  Test  by
“establishing whether learners do better on
the  higher  frequency  sections  than  on  the
lower frequency ones.” (p. 67).  They  found
that out of 30 as the maximum, the mean for
the  frequency  levels  were  as  follows:  25.29
(sd 5.80) for the 2000 level, 21.39 (7.17) for
the  3000  level,  18.66  (7.79)  for  the  5000
level  and  9.34  (7.01)  for  the  10  000  level.
According to them, analysis of variance plus
Scheffe  ´  tests  showed  that  the  differences
were  all  statistically  significant (p <.001).
The  validity  of  the  Academic  level  section
needs  more  explanation.  The  mean  score  of
this  section  in  the  profile  research  done  by
Schmitt et al. (2001) was found to be 22.65
which  apparently  places  it  somewhere
between  the  2000  level  and  3000  level.
However,  they  argue  that  the  words  in  this
section  are  different  from  the  other  levels,
and  therefore  should  not  be  included  in  the
profile  comparison.  The  validity  of  this
section  is  then  justified  by  analyzing  the
facility values of individual items and Rasch
item  difficulty  measures.  According  to
Schmitt et al. (2001), “the figures suggest
that the words in the academic level fit in a
broad range between the  2000 level and the
10 000 level.” (p. 68).
 
To  measure  the  participants  writing  ability,
the researchers used an original specimen of
the  writing  module  of  the  IELTS  exam
(ETS,  2005a).  Half-band  scores  were
included.  Task  2  of  the  General  Training
Writing  Module  was  assessed  based  on  1)
coherence and cohesion; 2) lexical resource;
and 3) grammatical range and accuracy. The
task requires the candidates to formulate and
develop  a  position  in  relation  to  a  given
prompt  in  the  form  of  a  question  or
statement.  The  inter-rater  reliability  of  the
scale was 0.87.
 
Procedure
The  data  collection  phase  comprised  the
administration of six tests; this phase started
in  July,  2010  and  ended  in  May,  2011.
During  this  period,  the  samples  were
gathered  across  the  five  cities  used  as  the
sampling  pool.  Other  than  the  narrative
intelligence test which was administered via
a movie session and recording participants’
voice, the other five tests were given to them
in  traditional  setting  of  paper  and  pencil
exams.  At  the  first  phase  of  the  study,  the
participants  took  the  writing  test  and  their
performance  was  rated  based  on  IELTS
scoring  criteria.  This  produced  a  set  of
writing scores on a scale of 1 to 9 with half-band  scores.  Then,  the  test  of  grammar  was
taken  by  participants  and  each  person
received  a  score  out  of  40.  In  the  next  step,
the  depth  of  vocabulary  test  was
administered and the participants were asked
to  mark  four  choices  altogether  for  each
item.  This  test  produced  a  set  of  scores
ranging  from  0  to  100.  Then  the  depth  of
vocabulary  test  was  given  to  the
participants. The participants’ scores on this
test were given on a scale of 0 to 160. After
that  the  Verbal  Intelligence  Test  was
administered  during  which  each  participant
was  presented  with  1  word  at  a  time  and
asked  to  explain  each  word’s  meaning
verbally.  The  examiner  rates  the  responses
with a 0, 1, or 2 depending on how well the
participant  defines  the  word.  Therefore,  the
scores  can  range  from  0  to  80  (Wechsler,
                    
1997). The last phase was the administration
of  the  narrative  intelligence  test.  The
participants  watched  the  first  10  minutes  of
a  movie  (Defiance)  and  then,  were  asked  to
recount  the  story.  They  were  also  asked  to
tell  their  story  of  the  first  day  of  the
elementary  school.  The  two  narratives
produced by each participant were then rated
by  two  raters  using  the  NIS  (Narrative
Intelligence  Scale).  The  average  score  for
the five sub-abilities of narrative intelligence
in  the  above  narrative  tasks  were  taken  as
the participants’ narrative intelligence score.
 
First of all, the internal reliability of the tests
used  in  the  study  was  calculated  using  the
Alpha Cronbach Method. After ensuring the
reliability  of  the  scores,  all  the  data  were
imported  into  SPSS  18.0  and  linked  to
AMOS 16.0 to be analyzed through DFA.
 
Results
In  the  present  study,  six  sets  of  data  were
collected  through  the  administration  of  the
tests.  The  descriptive  statistics  of  the  scores
obtained  by  all  346  participants  on  these
tests is presented in Table 1.

The  standard  deviations  show that “breadth
of  vocabulary”  scores  have  the  highest
diversity  whereas  verbal  intelligence  scores

are the most homogeneous among others. In
general,  macro  factors  namely  verbal  and
narrative  intelligences  show  less  deviation
from the mean, as opposed to micro factors.
The  widest  range  is  found in “breadth of
vocabulary”  scores  while  the  narrowest
range  is  associated  with  verbal  intelligence.
Breadth  of  vocabulary  has  the  highest
standard error of measurement.  
 
Classifying  L2  writers  based  on  language
and intelligence factors
To  answer  the  first  research  question,  a  set
of DFAs were run with L2 writing ability as
the  groping  variable,  and  language  and
intelligence factors as model predictors. The
statistics  of  Table  2  reflect  the  viability  of
running  DFA  for  analyzing  the  classifying
validity of language and intelligence factors.
Box’s  M  is  non-significant  in  all  cases
except  verbal  intelligence;  this  means  that
the  null  hypothesis  of  equal  population
covariance  matrices  is  not  rejected.  In  other
words,  there  is  no  significant  difference
between the covariances of model predictors
across low and high groups. This ensures the
validity  of  the  comparisons  made  between
the statistics of low and high groups. 

The  eigenvalues  provide  information  about
the  relative  efficacy  of  each  discriminant
function.  As  it  can  be  seen,  the  efficacy  of

depth  of  vocabulary  and  narrative
intelligence  as  the  grouping  variables  is
considerably higher than the other measures.
This means that one’s depth  of  vocabulary
(collocational  knowledge)  and  narrative
intelligence  (discourse  management  ability)
can predict one’s membership in low or high
groups of L2 writing ability more efficiently
than one’s knowledge  of  grammar,  breadth
of  vocabulary  (vocabulary  size),  and  verbal
intelligence.  In  other  words,  the  probability
of the correctness of one’s prediction about
learners’ L2 writing ability based on the
information  available  about  these  two
variables  will  be  stronger  than  the  other
variables.  The  canonical  correlation  is  the
most  useful  measure  in  the  table,  and  it  is
equivalent  to  Pearson's  correlation  between
the  discriminant  scores  and  the  groups  (low
and  high).  Here  the  results  show  that  the
correlation  between  discriminant  scores
produced  by  the  grouping  variable  (L2
writing)  and  the  scores  within  the  low  and
high  groups  is  0.37  for  depth  of  vocabulary
and  0.46  for  narrative  intelligence.
Therefore  the  predictions  made  based  on
these two variables for L2 writing ability are
more  realistic  than  the  predictions  made
based  on  the  scores  obtained  for  the  other
three predictors.
 
Wilks'  Lambda  shows  how  well  the  model
predictors  separate  cases  and  assign  them
into  groups.  This  measure  is  actually  equal
to  the  proportion  of  the  variance  in  the
discriminant  scores  which  cannot  be
explained  by  differences  among  the  groups.
Smaller  values  of  Wilks'  Lambda  indicate
greater discriminatory power of the function.
The  chi-square  statistic  tests  the  hypothesis
that  the  means  of  the  functions  listed  are
equal  across  groups.  As  it  can  be  seen,  the
discriminatory  power  of  two  model
predictors  (depth  of  vocabulary  and
narrative  intelligence)  is  more  (smaller
Lambdas:  0.67  and  0.79  respectively)  when
predicting  L2  writing ability compared with
the other three predictors (grammar, breadth
of  vocabulary,  and  verbal  intelligence
(greater  Lambdas:  0.95,  0.96,  and  0.95
respectively).  The  main  discriminant
function coefficients are shown in Table 3.

The  participants  of  the  study  were  divided
into  low  and  high  ability  groups  based  on
their  L2  writing  scores.  The  statistics
presented  in  Table  3  show  how  well  the
scores obtained on language and intelligence
tests  can  classify  the  participants  into  low
and  high  ability  groups.  The  frequencies
represent overlapping areas between original
and  predicted  L2  writing  scores.  The
number of cases in Low and High groups is
173. When L gets closer to Low or when H
gets  closer  to  High,  the  probability  of
making correct predictions about L2 writing
ability increases. For example, the frequency
                         
“137”  in  the  section  titled  “narrative
intelligence”  means  that  a  function
extrapolated  based  on  narrative  intelligence
scores,  can  predict  137  out  of  173  cases  in
the  low  ability  group  correctly.  That  is  to
say,  79.2%  of  the  participants  predicted  as
having low L2 writing ability based on their
narrative  intelligence  overlap  with  the
participants  which  were  put  into  that
category  based  on  their  original  L2  writing
scores.  In  other  words,  every  prediction
made about one’s membership in the low L2
writing  ability  group  based  on  one’s
narrative  intelligence  is  correct  by  79.2
percent. The same explanation applies to all
of  the  frequencies  shown  in  Table  3.
However,  none  of  these  numbers  and
percentages  can  show  the  total
discrimination  power  of  the  model
predictors.  This  is  presented  by
classification percentages.
 
The  numbers  shown  in  the  last  column  of
Table  3  indicate  how  well  each  of  the
predictors  can  discriminate  between  high
and  low  L2  writing  ability  learners.
According to the results of DFA, the highest
classification  coefficient  is  produced  by
narrative  intelligence  with  70.5  percent.  It
means  that  any  prediction  about  the
membership  of  a  participant  in  low  or  high
L2  writing  ability  groups  is  correct  by  70.5
percent.  The  second  best  classifier  is  depth
of  vocabulary  with  64.5  percent.  Verbal
intelligence,  breadth  of  vocabulary,  and
grammar  have  similar  classifying  validity
that  is  59.0,  57.8,  and  57.2  percent
respectively.  
 
Classifying l2 writers based on sub-abilities
of narrative intelligence
To  answer  the  second  research  question,
another  set  of  DFAs  were  run  with  L2
writing ability  as the  grouping variable, and
the  five  sub-abilities  of  narrative
intelligence.  Having  found  narrative
intelligence  as  the  best  classifier  of  L2
writing ability, the researchers then explored
it  further  by  looking  into  the  classifying
coefficients of the sub-abilities to see which
of  the  dynamics  defined  for  narrative
intelligence  by  Randall  (1999)  plays  a
greater  role  in  predicting  low  or  high  L2
writing  ability.  The  statistics  in  Table  4
reflect  the  viability  of  running  DFA  for
analyzing the classifying validity of the sub-abilities of narrative intelligence.

As it can be seen in Table 4, among the sub-abilities  of  narrative  intelligence,
emplotment has the highest relative efficacy
since  it  has  the  biggest  eigenvalue  (0.20);
however, the significance of 0.00 in Box’s
test  shows  that  the  validity  of  the
comparisons  made  between  low  and  high
groups  based  on  emplotment  scores  cannot
be  ensured.  The  significance  levels  of  the
Box’s test for the  other  four  sub-abilities
show  that  there  is  no  significant  difference
between the covariances of model predictors
across  low  and  high  groups;  therefore,  the
validity  of  all  the  comparisons  related  to
them can be ensured. The minimum relative
efficacy is reported for characterization with
en  eigenvalue  of  0.04.  As  already
mentioned, smaller Wilks’ Lambdas signal
greater discriminatory power. Regarding this
 
index,  after  emplotment,  thematization,  and
genre-ation  can  assign  cases  into  low  and
high  groups better than  characterization and
narration. The main DFA results for the sub-abilities  of  narrative  intelligence  are  shown
in  Table  5.  The  results  show  that  the
correlation  between  discriminant  scores
produced  by  the  grouping  variable  (L2
writing)  and  the  scores  within  the  low  and
high groups is 0.41 for emplotment, 0.37 for
thematization,  and  0.34  for  genre-ation.
Therefore  the  predictions  made  based  on
these  three  sub-abilities  of  narrative
intelligence  are  more  realistic  than  the
predictions  made  based  on  the  scores
obtained for the other two predictors.

As  Table  5  shows,  L2  writing  ability  group
memberships  predicted  based  on
emplotment  scores  (67.6)  are  more  valid
than  the  other  sub-abilities  of  narrative
intelligence.  Genre-ation  and  thematization
have identical classifying validity; however,
they differ from each other in the number of
cases  they  can  correctly  assign  to  low  and
high  groups.  In  fact,  thematization  can
assign  more  correct  cases  to  the  low  L2
writing  ability  group  (126  >  118)  while
genre-ation  can  predict  high  group
membership  more  efficiently  than
thematization (115 > 107).  The lowest case
predicting  power  for  both  low  and  high  L2
writing  ability  groups  is  reported  for
characterization (57.8%).
 
Discussion
The  present  study  was  launched  to  see  how
well  language  and  intelligence  factors  can
classify  L2  writers.  Language  factors
include  knowledge  of  grammar,  depth  of
vocabulary  (collocational  knowledge),  and
breadth  (size)  of  vocabulary.  Intelligence
factors  include  verbal  and  narrative
intelligence. The secondary aim of the study
was to see how well each of the sub-abilities
of  narrative  intelligence  can  do  the
classification.
 
According  to  the  results,  among  the  micro
factors,  depth  of  vocabulary  is  the  best
classifier  of  L2  writers.  It  can  predict  a
learner  as  a  low  or  high  ability  L2  writer
better  than  grammar  and  breadth  of
vocabulary.  That  is  to  say  in  producing  L2
writing,  knowing  word  collocations  is  more
important than the size of vocabulary or the
knowledge  of  grammar.  This  is  in
accordance with the results of some previous
studies. For example, the results of the study
conducted  by  Crossley  and  McNamara
(2009)  show  that  indexes  of  vocabulary
dealing with the depth of knowledge provide
a  more  meaningful  insight  into  the  lexical
aspects  of  L2  writing.  Appropriate
collocations can have a positive effect on the
cohesion and coherence of writing which are
both  important  markers  of  writing  quality.
                           
This finding can be used to promote the idea
that  teaching  word  collocations  in  L2
writing  classroom  is  more  important  than
expanding the vocabulary  circle or focusing
on grammar.  
 
Among  all  the  model  predictors,  narrative
intelligence  has  the  highest  classifying
validity when it comes to L2 writing ability.
It  even  surpasses  depth  of  vocabulary.  This
finding  can  be  analyzed  against  the
background  literature  available  on  the  role
of  micro  and  macro  factors  in  second
language  writing.  For  example,  our  results
are  in  accordance  with  Hirose’s  (2006)
emphasis  on  the  role  of  mental  macro
processes  in  determining  the  organizational
patterns  in  L2  writing.  In  the  present  study
verbal  and  narrative  intelligence  represent
macro  organizational  skills  used  in  writing.
The fact that narrative intelligence is even a
better  predictor  than  collocational
knowledge supports the view that favors the
superiority  of  macro  skills  over  micro
components. The prominent role of narrative
intelligence  in  predicting  L2  writing  ability
was  analyzed  further  by  looking  into  the
classifying power of the its five dimensions.
Among  the  sub-abilities  of  narrative
intelligence,  emplotment  is  the  most  valid
classifier  of  L2  writers.  This  finding  has
useful  implications  for  the  study  of  factors
affecting  L2  writing  ability  from  another
perspective. To understand the nature of the
role played by emplotment in increasing the
quality  of  writing,  one  has  to  look  into  the
dynamics  of  this  sub-ability  as  defined  by
Randall  (1999)  and  operationalized  by
Pishghadam  et  al.  (2011).  Emplotment
entails  skills  such  as  recognizing  the
difference  between  important  and  trivial
points,  and  maintaining  a  sold  line  of
argument thought produced discourse. These
are  high-order  mental  skills  that  mostly
contribute  to  the  organization  of  the  written
discourse.  There  is  a  solid  literature  on  the
place  of  higher-order  processes  in  L2
writing  (e.g.  Bitchener  &  Knoch,  2010;
Murphy & Roca de Larios, 2010).  
 
It  is  interesting  to  note  that  depth  of
vocabulary,  as  a  micro  factor  is  even
stronger than verbal intelligence (which is a
macro factor) in classifying L2 writers. One
reason  for  this  may  lie  in  the  mode  of
testing. The test used for measuring depth of
vocabulary is written while the test of verbal
intelligence  was  administered  orally.  In
addition,  the  assumption  that  a  translated
version  of  the  verbal  intelligence  test  is  as
reliable  as  the  original  test  might  be
problematic.  Of  course,  it  should  be  noted
that  verbal  intelligence  is  still  the  second
best  classifier  of  L2  writers  after  narrative
intelligence. This supports Randall’s (1999)
proposal  which  emphasizes  the  proximities
between narrative and verbal intelligence.
 
These  findings  have  useful  applications  in
teaching  English  as  a  foreign  or  second
language.  One  of  the  controversial  issues  in
L2  writing  research  is  the  problem  of
prioritization.  Identifying  and  attending  to
the  highest  teaching  priorities  in  writing
courses  have  concerned  many  scholars
(Ferris,  2004;  Nakamaru,  2011;  Truscott,
1999).  According  to  the  results  of  the
present  study,  collocational  knowledge  and
narrative  intelligence  must  receive  the  focal
attention  from  L2  writing  teachers.  Syllabi
designed  based  on  this  finding  can  help  L2
learners improve the quality of their writings
more efficiently. Of course, paying attention
to  the  role  of  collocation  in  writing  is  not
new;  however,  combining  this  with  a  focus
on  narrative  competence  is  another  matter
that  can  lead  to  a  better  framework  for
managing  the  writing  classrooms.  From
another  perspective,  this  finding  can
contribute  to  the  testing  to  L2  writing  and
increasing  the  construct  validity  of  writing
modules  designed  for  language  proficiency
 
exams.  The  definitions  provided  by  Randall
(1999)  for  the  dynamics  of  narrative
intelligence  can  be  used  to  reformulate  and
revise the rating criteria of the writing tests.
Raters need clear instructions to examine L2
writings;  whereas,  identifying  lexical  and
syntactic  aspects  of  writing  by  expert  raters
is  an  objective  and  traceable  process,
unraveling  the  complexities  of  their
understating  of  notions  such  as  coherence
and  writing  fluency  is  a  very  demanding
task.  It  can  be  argued  that  incorporating  the
concept  of  narrative  intelligence  into  the
rating frameworks used by the experts sheds
more  light  on  the  unexplored  aspects  of  the
testing of L2 writing.
 
The results of this study generated a number
of  questions  which  can  be  investigated  in
further  research.  The  impact  of  a  narrative
intervention  program  which  is  merged  into
an L2 writing course on L2 learners’ writing
performance  can  be  investigated  through  an
experimental  study.  Since  depth  of
vocabulary  and  narrative  intelligence  were
found to be the best classifiers of L2 writers,
it would be useful to explore the relationship
of  these  two  variables  via  qualitative
research. This study can also be extended by
using  a  more  diverse  set  of  writing  topics
which  may  affect  the  interaction  between
narrative  intelligence  and  language  factors
specially  collocational  knowledge.    Another
line  of  research  to  pursue  can  deal  with  the
rating processes and the  possible role of the
dynamics  of  narrative  intelligence  for
developing  the  mental  representations  of
coherence in the mind of raters. Last but not
least,  the  neuroimaging  techniques  offered
by  cognitive  scientists  can  be  used  to
complement  the  instruments  of  the  present
study  with  neural  correlates  of  lexical
processing  and  narrative  intelligence  in  L2
writing.

Abiodun,  A.  J.,  &  Folaranmi,  A.  O.  (2007).
Effects  of  verbal  ability  on  second
language writers’ achievement in essay
writing  in  English  language.
International  Journal  of  African  &
African American Studies, 6, 61-67.
Azmoon  Padid  Institute.  (1993).  The
standardization  of  Wechsler’s  Adult
Intelligence Scale III. Tehran, Iran.
Bers,  M.  U.  (2002).  We  are  what  we  tell:
Designing  narrative  environments  for
children.  In  M.  Mateas  &  P.  Sengers
(Eds.).  Narrative  intelligence:  Advances
in consciousness research (pp. 113-128).
Philadelphia: John Benjamins.
Bitchener,  J.,  &  Knoch,  U.  (2010).  Raising
the linguistic accuracy level of advanced
L2  writers  with  written  corrective
feedback.  Journal  of  Second  Language
Writing, 19(4), 207-217.
Bourke,  L.,  &  Adams,  A.  M.  (2010).  
Cognitive  constraints  and  the  early
learning  goals  in  writing.  Journal  of
Research in Reading, 33, 94-110.
Bruner,  J.  (1987).  Life  as  narrative.  Social
Research, 54, 11–32.
Bruner, J. (1991). The narrative construction
of reality. Critical Inquiry, 18, 1-21.
Bruner,  J.  (1998).  What  is  a  narrative  fact?
Annals  of  the  American  Academy  of
Political and Social Science, 560, 17-27.
Collins,  J.  L.  (1998).  Strategies  for
struggling  writers.  New  York:  The
Guilford Press.
Connor, U. (1984). A study of cohesion and
coherence  in  ESL  students’  writing.
Papers  in  Linguistic:  International
Journal  of  Human  Communication,  17,
301–316.
Crossley, S. A. & McNamara, D. S. (2009).
Computational  assessment  of  lexical
differences  in  L1  and  L2
writing. Journal  of  Second  Language
Writing, 18, 119-135.
Crossley, S. A., & McNamara, D. S. (2010).
Cohesion,  coherence,  and  expert
evaluations  of  writing  proficiency.  In  S.
Ohlsson  &  R.  Catrambone
(Eds.), Proceedings  of  the  32nd Annual
Conference  of  the  Cognitive  Science
Society  (pp.  984-989).  Austin,  TX:
Cognitive Science Society.  
Crossley, S. A., & McNamara, D. S. (2011).
Understanding  expert  ratings  of  essay
quality: Coh-Metrix analyses of first and
second  language  writing. International
Journal  of  Continuing  Engineering
Education  and  Life-Long  Learning,
21 (2/3), 170-191.  
Cumming,  A.  (1990).  Metalinguistic  and
ideational  thinking  in  second  language
composing.  Written  Communication,  7,
482–511.
Dautenhahn,  K.  (2002).  The  narrative
intelligence  hypothesis:  In  search  of  the
transactional  format  of  narratives  in
humans  and  other  social  animals.  In  M.
Beynon,  C.  L.  Nehaniv  and  K.
Dautenhahn  (Eds.).  CT  2001  (pp.  248-266). Berlin: Springer-Verlag.
de  la  Fuente,  M.  J.  (2002).  Negotiation  and
oral  acquisition  of  L2  vocabulary:  The
roles of input and output in the receptive
and  productive  acquisition  of  words.
Studies in Second Language Acquisition,
24, 81–112.
DeVillez,  R.  (2003).  Writing:  Step  by  step.
Dubuque: Kendall Hunt.
Educational Testing Service (2005a).  IELTS
specimen  material.  Cambridge:
Cambridge University Press.
Educational  Testing  Service.  (2005b).
TOEFL actual tests: 7 full-length paper-based exams administered in the past by
ETS.  Cambridge:  Cambridge  University
Press.
Ellis, R. (1995). Modified oral input and the
acquisition  of  word  meanings.  Applied
Linguistics, 16, 409–435.
Fahim,  M.,  &  Pishghadam,  R.  (2007).  On
the role of emotional, psychometric, and
verbal  intelligences  in  the  academic
achievement  of  university  students
majoring  in  English  language.  Asian
EFL Journal, 9, 240-253.
Ferris,  D.  R.  (2004).  The  ‘‘grammar
correction’’ debate in L2 writing: Where
are  we,  and  where  do  we  go  from  here?
(and  what  do  we  do  in  the  meantime  .  .
.?).  Journal  of  Second  Language
Writing, 13, 49-62.
Ferris,  D.  R.  (2010).  Second  language
writing  research  and  written  corrective
feedback  in  SLA:  Intersections  and
practical  applications.  Studies  in  Second
Language Acquisition, 32(2), 181-201.
Gardner, H. (1983). Frames of mind. New
York: Basic books.
Haastrup,  K.,  &  Henriksen,  B.  (2000).
Vocabulary acquisition: Acquiring depth
of knowledge through network building.
International  Journal  of  Applied
Linguistics, 10, 221-240.
Hall, C. (1990). Managing the complexity of
revising  across    languages.  TESOL
Quarterly, 24, 43-60.
Hirose,  K.  (2006).  Pursuing  the  complexity
of  the  relationship  between  L1  and  L2
writing.  Journal  of  Second  Language
Writing, 15, 142-146.
Jarvis,  S.  (2010).  Comparison-based  and
detection-based  approaches  to  transfer
research.  In  L.  Roberts,  M.  Howard,  M.
Laoire,  &  D.  Singleton  (Eds.),
EUROSLA  2010  Yearbook  (pp.  169-
192).  Amsterdam:  John  Benjamins
Publishing Company.
Kenkel,  J.,  &  Yates,  R.  (2009).  The
Interlanguage  grammar  of  information
management  in  L1  and  L2  developing
writing.  Written  Communication,  26,
392-416.
Kobayashi,  H.,  &  Rinnert,  C.  (2008).  Task
response and text construction across L1
and  L2  writing.  Journal  of  Second
Language Writing, 17, 7-29.
McNamara,  D.  S.,  Crossley,  S.  A.,  &
McCarthy,  P.  M.  (2010).  Linguistic
features  of  writing  quality.    Written
Communication, 27, 57-86.  
McNamara,  D.  S.,  Kintsch,  E.,  Butler-Songer,  N.,  &  Kintsch,  W.  (1996).    Are
good texts always better? Interactions of
text  coherence,  background  knowledge,
and  levels  of  understanding  in  learning
from text. Cognition and Instruction, 14,
1-43.  
McNamara,  D.  S.,  Louwerse,  M.  M.,
McCarthy,  P.  M.,  &  Graesser,  A.  C.
(2010). Coh-Metrix: Capturing linguistic
features  of  cohesion.  Discourse
Processes, 47, 292-330.
Murphy,  L.,  &  Roca  de  Larios,  J.  (2010).
Searching  for  words:  One  strategic  use
of  the  mother  tongue  by  advanced
Spanish  EFL  writers.  Journal  of  Second
Language Writing, 19(2), 61-81.
Nakamaru,  S.  (2011).  Lexical  issues  in
writing center tutorials with international
and  US-educated  multilingual  writers.  
Journal  of  Second  Language  Writing,
19, 95-113.
Pishghadam,  R.  (2009).  Emotional  and
verbal intelligences in language learning.
Iranian  Journal  of  Language  Studies,
3(1), 43-64.
Pishghadam,  R.,  Baghaei,  P.,  Shams, M.,  &
Shamsaee,  S.  (2011).  Construction  and
validation  of  a  narrative  intelligence
scale with the Rasch rating scale model.
International  Journal  of  Educational
and Psychological Assessment, 8(1), 75-90.
Polio,  C.  (2001).  Research  methodology  in
second  language  writing  research:  The
case text-based studies.  In T. Silva & P.
K.  Matsuda  (Eds.),  On  second  language
writing  (pp.  91–115).  Mahwah,  New
Jersey: Lawrence Erlbaum.
Qian,  D.D.  (1999).  Assessing  the  roles  of
depth  and  breadth  of  vocabulary
knowledge  in  reading  comprehension.
Canadian Modern Language Review, 56,
282-308.
Pennington,  M.  C.,  &  So,  S.  (1993).
Comparing  writing  process  and  product
across  two  languages:  A  study  of  6
Singaporean  university  student  writers.
Journal of Second Language  Writing, 2,
41-63.
Randall,  W.  L.  (1999).  Narrative
intelligence and the novelty of our lives.
Journal of Aging Studies, 13(1), 11-28.
Reid, J. R. (1992). A computer text analysis
of  four  cohesion  device  in  English
discourse  by  native  and  nonnative
writers.  Journal  of  Second  Language
Writing, 1, 79–107.
Schmitt,  N.  (1998).  Tracking  the
incremental  acquisition  of  a  second
language  vocabulary:  A  longitudinal
study. Language Learning, 48, 281–317.
Schmitt,  N.,  Schmitt,  D.,  &  Calpham,  C.
(2001).  Developing  and  exploring  the
behavior  of  two  new  versions  of  the
Vocabulary  Levels  Test.  Language
Testing, 18, 55-88.
Segalowitz,  N.  (2010).  Cognitive  bases  of
second  language  speech  fluency.  New
York: Routledge.
Silva,  M.  A.  (2008).  Development  of  the
WAIS-III: A brief overview, history, and
Description.  Graduate  Journal  of
Counseling Psychology, 1, 117-135.
Sparks,  R.,  &  Gonschow,  L.  (2001).
Aptitude for learning a foreign language.
Annual  Review  of  Applied  Linguistics,
21, 90-111.
Stallard,  K.  (1974).  An  analysis  of  the
writing behavior of good student writers.
Research in the Teaching of English, 18,
206-218.
Truscott,  J.  (1996).  The  case  against
grammar  correction  in  L2  writing
classes.  Language  Learning,  46,  327-369.
Truscott, J. (1999). The case for ‘the  case
for  grammar  correction  in  L2  writing
classes’: A response to Ferris. Journal of
Second Language Writing, 8, 111-122.
Wechsler,  D.  (1981).  Wechsler  adult
intelligence  scale  revised.  San  Antonio,
TX: Psychological Corporation.
Wechsler,  D.  (1997).  WAIS–III
administration  and  scoring  manual.  San
Antonio,  TX:  Psychological
Corporation.
Weston, J. L., Crossley, S. A., McCarthy, P.
M., & McNamara, D. S. (2011). Number
of  words  versus  number  of  ideas:
Finding  a  better  predictor  of  writing
quality.  In  R.  C.  Murray  &  P.  M.
McCarthy  (Eds.), Proceedings  of  the
24th international  Florida  artificial
intelligence  research  society  (FLAIRS)
conference (pp.  335-340).  Menlo  Park,
CA: AAAI Press.